skip to main content


Search for: All records

Creators/Authors contains: "Carslaw, Ken S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. This study presents the first full annual cycle (2019–2020) of ambient surface aerosol particle number concentration measurements (condensationnuclei > 20 nm, N20) collected at Summit Station (Summit), in the centre of the Greenland Ice Sheet (72.58∘ N, −38.45∘ E; 3250 ma.s.l.). The mean surface concentration in 2019 was 129 cm−3, with the 6 h mean ranging between 1 and 1441 cm−3. The highest monthly mean concentrations occurred during the late spring and summer, with the minimum concentrations occurring in February (mean: 18 cm−3). High-N20 events are linked to anomalous anticyclonic circulation over Greenland and the descent of free-tropospheric aerosol down to the surface, whereas low-N20 events are linked to anomalous cyclonic circulation over south-east Greenland that drives upslope flow and enhances precipitation en route to Summit. Fog strongly affects particle number concentrations, on average reducing N20 by 20 % during the first 3 h of fog formation. Extremely-low-N20 events (< 10 cm−3) occur in all seasons, and we suggest that fog, and potentially cloud formation, can be limited by low aerosol particle concentrations over central Greenland. 
    more » « less
  2. Model output from "A model intercomparison of CCN-limited tenuous clouds in the high Arctic", accepted for publication in Atmospheric Chemistry and Physics, 2018, same authors. The intercomparison includes output from three large-eddy simulation models (UCLALES-SALSA, MIMICA, and COSMO-LES) and three numerical weather prediction models (COSMO-NWP, WRF, and UM-CASIM) for a case study of high-Arctic tenuous cloud based on observations from the 2008 Arctic Summer Cloud Ocean Study (ASCOS) campaign. See publication for details. The discussion preprint for peer review can be found at https://doi.org/10.5194/acp-2017-1128.

     
    more » « less
  3. Abstract

    Iron can be a growth‐limiting nutrient for phytoplankton, modifying rates of net primary production, nitrogen fixation, and carbon export ‐ highlighting the importance of new iron inputs from the atmosphere. The bioavailable iron fraction depends on the emission source and the dissolution during transport. The impacts of anthropogenic combustion and land use change on emissions from industrial, domestic, shipping, desert, and wildfire sources suggest that Northern Hemisphere soluble iron deposition has likely been enhanced between 2% and 68% over the Industrial Era. If policy and climate follow the intermediate Representative Concentration Pathway 4.5 trajectory, then results suggest that Southern Ocean (>30°S) soluble iron deposition would be enhanced between 63% and 95% by 2100. Marine net primary productivity and carbon export within the open ocean are most sensitive to changes in soluble iron deposition in the Southern Hemisphere; this is predominantly driven by fire rather than dust iron sources. Changes in iron deposition cause large perturbations to the marine nitrogen cycle, up to 70% increase in denitrification and 15% increase in nitrogen fixation, but only modestly impacts the carbon cycle and atmospheric CO2concentrations (1–3 ppm). Regionally, primary productivity increases due to increased iron deposition are often compensated by offsetting decreases downstream corresponding to equivalent changes in the rate of phytoplankton macronutrient uptake, particularly in the equatorial Pacific. These effects are weaker in the Southern Ocean, suggesting that changes in iron deposition in this region dominates the global carbon cycle and climate response.

     
    more » « less